Subalpine forest damage from a severe windstorm in northern Colorado

Author:

Veblen Thomas T,Kulakowski Dominik,Eisenhart Karen S,Baker William L

Abstract

As windstorm intensity increases above some threshold, disturbance spread and damage patterns are expected to be less strongly shaped by preblowdown forest composition and structure than by the pattern of the storm itself. We examined this generalization by analyzing differences in wind damage among tree species and stands following a severe blowdown in 1997 affecting over 10 000 ha of subalpine forest in the Routt Divide area of northern Colorado, U.S.A. Individual tree traits such as species, height, and status as standing dead or alive strongly influenced the amount and type (uprooting vs. snapping) of wind damage. Populus tremuloides Michx. exhibited much less uprooting and overall damage than the conifers. Among the canopy trees of the conifer species, Pinus contorta Dougl. ex. Loud and Abies lasiocarpa (Hook.) Nutt. sustained the lowest and highest rates of snapping, respectively. Standing dead conifers were more likely to be snapped than uprooted, and taller trees were more likely to be damaged than shorter trees. Stand-level characteristics such as stand density, amount of dead basal area, and species composition were predictive of the amount of wind damage for areas of moderate- but not high-severity blowdown. Even in such an extreme windstorm as the Routt blowdown, which had estimated wind speeds of 200–250 km/h, individual tree attributes and stand-level characteristics significantly influenced the severity and type of wind damage.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3