Endothelin in the perinatal circulation

Author:

Perreault Thérèse,Coceani Flavio

Abstract

During the fetal period, blood is oxygenated through the placenta, and most of the cardiac output bypasses the lung through the ductus arteriosus. At birth, pulmonary vascular resistance falls with the initiation of ventilation. Coincidentally, the ductus arteriosus constricts. Endothelin-1 (ET-1) appears to play an important role during that transition period and postnatally. ET-1 can dramatically increase resistance in the placental microcirculation and may be involved in blood flow redistribution with hypoxia. At birth, the increase in oxygen tension is important in triggering ductus vasoconstriction. It is proposed that oxygen triggers closure of the ductus arteriosus by activating a specific, cytochrome P450-linked reaction, which in turn stimulates the synthesis of ET-1. On the neonatal heart, ET-1 has a positive chronotropic but negative inotropic effect. In the newborn piglet and the fetal lamb, both term and preterm, ET-1 causes a potent, long-lasting pulmonary vasoconstriction. Furthermore, a transient dilator response has been identified, and it is ascribed to nitric oxide formation. ET receptors are abundant in the piglet pulmonary vasculature. They are predominantly of the ETA constrictor subtype, though ETB2 constrictor receptors may also be present in certain species. The dilator response is linked to the ETB1 receptor, and the number of ETB1 receptors is reduced in hypoxia-induced pulmonary hypertension. ET-1 appears to be a causative agent in the pathogenesis of hypoxia- and hyperoxia-induced pulmonary hypertension as demonstrated by reversal of hemodynamic and morphological changes with treatment with an ETA receptor antagonist. Findings are amenable to practical applications in the management of infants with pulmonary hypertension or requiring persistent patency of the ductus arteriosus.Key words: ductus arteriosus, neonatal pulmonary circulation, neonatal pulmonary hypertension, neonatal cardiomyocytes, fetus.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3