Naïve Bayes classifier assisted automated detection of cerebral microbleeds in susceptibility-weighted imaging brain images

Author:

Ateeq Tayyab1,Faheem Zaid Bin2ORCID,Ghoneimy Mohamed3,Ali Jehad4ORCID,Li Yang5,Baz Abdullah6

Affiliation:

1. Department of Computer Engineering, The University of Lahore, Lahore 54000, Pakistan

2. Department of Computer Science & IT, The Islamia University of Bahawalpur, Bahawalpur, Punjab 63100, Pakistan

3. Faculty of Computer Science, Modern Science & Arts (MSA) University, Giza, Egypt

4. Department of AI Convergence Network, Ajou University, Suwon, South Korea

5. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China

6. Department of Computer Engineering, College of Computer and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia

Abstract

Cerebral microbleeds (CMBs) in the brain are the essential indicators of critical brain disorders such as dementia and ischemic stroke. Generally, CMBs are detected manually by experts, which is an exhaustive task with limited productivity. Since CMBs have complex morphological nature, manual detection is prone to errors. This paper presents a machine learning-based automated CMB detection technique in the brain susceptibility-weighted imaging (SWI) scans based on statistical feature extraction and classification. The proposed method consists of three steps: (1) removal of the skull and extraction of the brain; (2) thresholding for the extraction of initial candidates; and (3) extracting features and applying classification models such as random forest and naïve Bayes classifiers for the detection of true positive CMBs. The proposed technique is validated on a dataset consisting of 20 subjects. The dataset is divided into training data that consist of 14 subjects with 104 microbleeds and testing data that consist of 6 subjects with 63 microbleeds. We were able to achieve 85.7% sensitivity using the random forest classifier with 4.2 false positives per CMB, and the naïve Bayes classifier achieved 90.5% sensitivity with 5.5 false positives per CMB. The proposed technique outperformed many state-of-the-art methods proposed in previous studies.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3