SENP1 knockdown potentiates the apoptosis, cell cycle arrest, and reduces cisplatin resistance of diffuse large B cell lymphoma cells via inducing ferroptosis

Author:

Dong Jinfeng12,Zheng Xiaoqiang12ORCID

Affiliation:

1. Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China

2. Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, China

Abstract

Ferroptosis has been regarded as a critical event in the process of diffuse large B cell lymphoma (DLBCL). Sentrin-specific protease 1 (SENP1) has emerged as an oncogene in multiple human malignancies. The present work was to investigate the effects of SENP1 on the progression of DLBCL and the possible regulatory mechanism involving ferroptosis. SENP1 expression in DLBCL tissues, parental and cisplatin-resistant DLBCL cells were, respectively, tested by GEPIA database, RT-qPCR, and Western blot. Cell viability was estimated via CCK-8 assay. Flow cytometry analysis estimated cell apoptosis and cycle. Western blot examined the expression of apoptosis-, cell cycle-, and ferroptosis-associated proteins. TBARS assay and BODIPY 581/591 C11 probe measured lipid peroxidation. Related assay kit assessed total iron levels. CCK-8 and flow cytometry evaluated cisplatin resistance. SENP1 expression was raised in DLBCL tissues and cells. SENP1 knockdown reduced cell viability, boosted cell apoptosis, cell cycle arrest, and elevated cisplatin sensitivity in DLBCL. SENP1 depletion drove the ferroptosis of both parental and cisplatin-resistant DLBCL cells and ferroptosis inhibitor Fer-1 reversed the influences of SENP1 inhibition on cell viability, apoptosis, cell cycle, and cisplatin resistance in DLBCL. Anyway, SENP1 absence might facilitate ferroptosis to obstruct the development of DLBCL and cisplatin resistance.

Funder

Natural Science Fundation of Fujian Province

Scientific Research Project from the Education Department of Fujian Province

Fujian Provincial Health Technology Project

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3