Attention-based deep learning framework to recognize diabetes disease from cellular retinal images

Author:

Kothadiya Deep12ORCID,Rehman Amjad1,Abbas Sidra3,Alamri Faten S.4,Saba Tanzila1

Affiliation:

1. Artificial Intelligence and Data Analytics Lab (AIDA), CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia

2. U & P U Patel Department of Computer Engineering, Chandubhai S. Patel Institute of Technology (CSPIT), Faculty of Technology (FTE), Charotar University of Science and Technology (CHARUSAT), Changa, India

3. Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan

4. Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

A medical disorder known as diabetic retinopathy (DR) affects people who suffer from diabetes. Many people are visually impaired due to DR. Primary cause of DR in patients is high blood sugar, and it affects blood vessels available in the retinal cell. The recent advancement in deep learning and computer vision methods, and their automation applications can recognize the presence of DR in retinal cells and vessel images. Authors have proposed an attention-based hybrid model to recognize diabetes in early stage to prevent harmful clauses. Proposed methodology uses DenseNet121 architecture for convolution learning and then, the feature vector will be enhanced with channel and spatial attention model. The proposed architecture also simulates binary and multiclass classification to recognize the infection and the spreading of disease. Binary classification recognizes DR images either positive or negative, while multiclass classification represents an infection on a scale of 0–4. Simulation of the proposed methodology has achieved 98.57% and 99.01% accuracy for multiclass and binary classification, respectively. Simulation of the study also explored the impact of data augmentation to make the proposed model robust and generalized. Attention-based deep learning model has achieved remarkable accuracy to detect diabetic infection from retinal cellular images.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3