Studies on the effects of magnesium ion and propranolol on iris muscle phosphatidate phosphohydrolase

Author:

Abdel-Latif Ata A.,Smith Jack P.

Abstract

The properties, subcellular distribution, and the effects of Mg2+ and propranolol on phosphatidate phosphohydrolase (EC 3.1.3.4) from rabbit iris smooth muscle have been investigated. The particulate and soluble (0–30% (NH4)2SO4 fraction) enzymes were assayed using aqueous phosphatidate dispersions and membrane-bound phosphatidate as substrates, respectively. When measured with aqueous substrate, activity was detected in both the particulate and soluble fractions, with the highest relative specific activity found in the microsomal fraction. Maximum dephosphorylation by the microsomal enzyme was about 1100 nmol of inorganic phosphate released/h per milligram protein and occurred at pH 7.0–7.5. In general Mg2+ inhibited the phosphohydrolase activity of the microsomal fraction and stimulated that of the soluble fraction, and the effects of the divalent cation on both of these activities were reversed by propranolol. The microsomal enzyme was slightly stimulated by deoxycholate and inhibited by the divalent cations Mg2+, Ca2+, and Mn2+ at concentrations > 0.25 mM. In contrast, the soluble enzyme was stimulated by Mg2+. Inhibition of the microsomal enzyme by Mg2+ (0.5 mM) was reversed by both EDTA, which also stimulated at higher concentrations (1 mM), and propranolol (0.1–0.2 mM). The inhibitory effect of Ca2+ on the enzyme was not reversed by propranolol. In the absence of Mg2+, the microsomal enzyme was inhibited by propranolol in a dose-dependent manner, and both in the absence and presence of the divalent cation the soluble enzyme was inhibited by the drug in a similar manner. These data suggest that the cationic moiety of propranolol may act by competing at the Mg2+-binding sites. Addition of propranolol (0.2 mM) to iris muscle prelabelled with [14C]arachidonic acid increased accumulation of [14C]phosphatidic acid at all time intervals (2.5–90 min) and brought about a corresponding initial decrease in the formation of [14C]diacylglycerol at short time intervals (2.5 min), thus implicating the phosphohydrolase as a possible site of action of the drug on glycerolipid metabolism in this tissue. In addition to reporting on the characteristics and distribution of phosphatidate phosphohydrolase in the iris smooth muscle, the data presented add further support to our hypothesis that propranolol redirects glycerolipid metabolism in the iris by exerting multiple effects on the enzymes involved in their biosynthesis.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3