Clearing up cloudy waters: a review of sediment impacts to unionid freshwater mussels

Author:

Goldsmith Amanda M.1,Jaber Fouad H.2,Ahmari Habib3,Randklev Charles R.1

Affiliation:

1. Texas A&M Natural Resources Institute, Texas A&M AgriLife Research Center at Dallas, Dallas, TX 75252, USA.

2. Department of Biological and Agricultural Engineering, Texas A&M AgriLife Extension, Dallas, TX 75252, USA.

3. Department of Civil Engineering, University of Texas at Arlington, Arlington, TX 76010, USA.

Abstract

Freshwater unionid mussels are among the most imperiled fauna in North America, and their decline has been partially attributed to sediment from anthropogenic activities. However, there remains a debate regarding the role played by sediment in mussel declines due to a lack of field and laboratory evidence. If sediment is responsible for mussel declines, then a lack of information will likely impede efforts to mitigate species declines and protect remaining habitat. However, if the impacts of sediment are overstated, time and resources may be wasted on a threat that has little bearing on mussel declines or habitat loss. Given this knowledge gap, the purpose of this paper is to review the literature focused on the potential impact of suspended sediment and sedimentation on freshwater mussels. We focused our search on suspended sediment, expressed either as suspended sediment concentration (SSC) or total suspended solids (TSS), and sediment deposition and scour. We found increases in suspended solids could impact mussels by decreasing food availability, physically interfering with filter feeding and respiration, and impeding various aspects of the mussel–host relationship. We also found mussel–sediment thresholds, wherein certain concentrations of sediment caused significant declines in population performance, which could serve as reference points for ecological research and management. Specifically, we found clearance rates (a measure of feeding) were negatively impacted by TSS concentrations >8 mg/L, and respiratory stress occurred at ∼600 mg/L. Declines in fertilization success and glochidial (i.e., mussel larvae) development were observed at TSS values of 15 mg/L, and reproductive failure occurred at 20 mg/L. Impacts on host fish attachment and glochidial encystment occurred at TSS concentrations of 1250–5000 mg/L. Impacts on fish varied depending on the biological endpoint but typically occurred at TSS values ranging from 20 to 5000 mg/L. We also found mussels were sensitive to smothering and mortality occurred at depths as low as 0.6–2.5 cm of substrate. Finally, we found relative shear stress (RSS) values >1, which is a measure of substrate stability in response to scour and entrainment, resulted in significant declines in mussel biodiversity.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3