A novel 49-kilodalton protein from Artemia cross-links microtubules in vitro

Author:

Zhang Jianshe,MacRae Thomas H.

Abstract

A 49 kilodalton (kDa) protein, previously proposed to cross-link microtubules, was purified to apparent homogeneity from cell-free extracts of the brine shrimp Artemia. When incubated with tubulin under assembly conditions, the purified 49-kDa protein cross-linked the resulting microtubules. Preformed microtubules were also cross-linked when incubated with the 49-kDa protein. Upon centrifugation through sucrose cushions the 49-kDa protein cosedimented with microtubules, suggesting a stable association between the cross-linking protein and tubulin. Such microtubules were interconnected by particles which were circular, bilobed, or elongated in shape. Disruption of microtubule cross-linking and dissociation of the 49-kDa protein from microtubules occurred in the presence of ATP and 5′-adenylylimidodiphosphate (AMP–PNP), a nonhydrolyzable analogue of ATP. The 49-kDa protein was moderately resistant to heat, it did not stimulate tubulin assembly, and it did not react with antibodies to neural microtubule-associated proteins (MAPs) and kinesin. These observations indicate that the 49-kDa protein is different from many known MAPs, a conclusion strengthened by the inability of antibodies raised to the 49-kDa protein to recognize these proteins. The amino terminal 15 amino acid residues of the 49-kDa protein were determined by Edman digestion and an antibody raised to this peptide reacted with the 49-kDa protein on Western blots. Microtubule cross-linking was unaffected by the synthetic amino-terminal peptide, even when it was present at a fivefold molar excess over the 49-kDa protein. A search of three protein databanks revealed that the amino terminus of the 49-kDa protein is unique among published sequences. The findings verify our earlier proposal that Artemia contains a 49-kDa microtubule cross-linking protein and demonstrate that it has a novel set of characteristics. The 49-kDa protein has the potential to play an important role in microtubule organization and function.Key words: microtubule cross-linking, microtubule-associated proteins, Artemia.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3