Cloning of two glutamate dehydrogenase cDNAs fromAsparagus officinalis: Sequence analysis and evolutionary implications

Author:

Pavesi Angelo,Ficarelli Antonella,Tassi Francesca,Restivo Francesco Maria

Abstract

Two different amplification products, termed c1 and c2, showing a high similarity to glutamate dehydrogenase sequences from plants, were obtained from Asparagus officinalis using two degenerated primers and RT-PCR (reverse transcriptase polymerase chain reaction). The genes corresponding to these cDNA clones were designated aspGDHA and aspGDHB. Screening of a cDNA library resulted in the isolation of cDNA clones for aspGDHB only. Analysis of the deduced amino acid (aa) sequence from the full-length cDNA suggests that the gene product contains all regions associated with metabolic function of NAD glutamate dehydrogenase (NAD-GDH). A first phylogenetic analysis including only GDHs from plants suggested that the two GDH genes of A. officinalis arose by an ancient duplication event, pre-dating the divergence of monocots and dicots. Codon usage analysis showed a bias towards A/T ending codons. This tendency is likely due to the biased nucleotide composition of the asparagus genome, rather than to the translational selection for specific codons. Using principal coordinate analysis, the evolutionary relatedness of plant GDHs with homologous sequences from a large spectrum of organisms was investigated. The results showed a closer affinity of plant GDHs to GDHs of thermophilic archaebacterial and eubacterial species, when compared to those of unicellular eukaryotic fungi. Sequence analysis at specific amino acid signatures, known to affect the thermal stability of GDH, and assays of enzyme activity at non-physiological temperatures, showed a greater adaptation to heat-stress conditions for the asparagus and tobacco enzymes compared with the Saccharomyces cerevisiae enzyme.Key words: Asparagus officinalis, glutamate dehydrogenase, complementary DNA, enzyme thermostability, principal coordinate analysis, evolution.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3