Author:
McNicol Archibald,Gerrard Jon M.,MacIntyre D. Euan
Abstract
The possibility that thrombin-induced platelet reactivity could occur via both a receptor-related and a proteolytic process was examined. Thrombin elicited the formation of considerably more [32P)phosphatidic acid (an index of phospholipase C catalysed phosphoinositide metabolism) than did platelet activating factor, 5-hydroxytryptamine, ADP, and the thromboxane A2 analogue EP171, when these agents were added either alone or in combination. Co-addition of thrombin and EP171 did not evoke significantly more [32P]phosphatidic acid than did thrombin alone. The protease inhibitor leupeptin, decreased but did not abolish [32P]phosphatidic acid formation elicited by either thrombin alone or thrombin in combination with EP171. The serine protease, trypsin, stimulated an increase in [32P]phosphatidic acid and this effect was additive with that of EP171. This augmentation by trypsin of EP171-induced [32P]phosphatidic acid formation was inhibited by leupeptin. These results are consistent with the concept that thrombin-induced activation of phospholipase C occurs by two distinct mechanisms: one via proteolysis, which is sensitive to leupeptin, and the other via receptor activation, a process shared by EP171. The individual components of this dual mechanism can be mimicked by the co-addition of a receptor-directed agonist (EP171) and a proteolytic agent (trypsin).Key words: platelet, thrombin, proteolysis, phosphoinositide.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献