Local adaptation of balsam fir seedlings improves growth resilience to heat stress

Author:

Ravn Jacob1ORCID,Taylor Anthony R.1ORCID,Lavigne Michael B.2ORCID,D'Orangeville Loïc1ORCID

Affiliation:

1. Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, NB E3B 5A3, Canada

2. Natural Resources Canada, Canadian Forest Service – Atlantic Forestry Centre, 1350 Regent Street, PO Box 4000, Fredericton, NB E3B 5P7, Canada

Abstract

Increasing frequencies of heat waves and drought are expected to shift the range and growth of balsam fir ( Abies balsamea (L.) Mill.), a widely distributed cold-adapted boreal species. However, our ability to predict this species response to these climate anomalies remains limited, especially when considering how trees can exhibit delayed and persistant growth responses to these stressors, or legacy effects. Here, we assess the growth response of balsam fir seedlings from four populations following 60 treatment combinations of temperature and water deficit in the previous year. Although we observed moderate water deficit legacy effects on growth, there were no resilience or recovery responses. We did, however, observe considerable negative legacy effects on growth proportional to the level of warming, with average legacy growth declines reaching 45% under the highest warming treatment. Furthermore, the southern populations displayed a 28% higher average growth resilience to temperature stress compared with the northern populations, indicating a higher tolerance to warming. When comparing legacy effects on balsam fir populations at moderate warming conditions relative to the current local baseline climate, we report limited growth declines for southern populations and growth increases for the northern populations. While our results highlight the importance of legacy effects from heat stress in seedlings, they also provide evidence that careful selection of warm-adapted genotypes for reforestation efforts may help offset some of these legacy effects.

Funder

NSERC Discovery Grant

New Brunswick Innovation Foundation

Canadian Forest Service

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3