Estimating potential tree height in Pinus radiata plantations using airborne laser scanning data

Author:

Gavilán-Acuña Gonzalo1ORCID,Coops Nicholas C.1,Tompalski Piotr2,Mena-Quijada Pablo3ORCID

Affiliation:

1. Department of Forest Resources Management, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada

2. Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada

3. Investigaciones Forestales Bioforest S.A., Camino a Coronel, Km. 15, 403 0000 Concepción, Chile

Abstract

Representing the spatial distribution of trees and competition interactions in growth models improves growth prediction and provides insights into spatially explicit forecasts for precise silvicultural interventions. However, this information is rarely taken into account over large areas because obtaining the spatial distribution of individual trees and estimating their competition is both expensive and time consuming. Airborne laser scanning enables rapid estimation of tree height and other attributes over large areas. In this study, we implemented an individual tree detection approach to first extract tree attributes of Pinus radiata D. Don plantations, and second to use this spatially explicit information on tree location and competition to forecast potential tree height, defined as a maximum projected tree height at rotation age. To do so, using a chronosequence of tree heights, we developed a tree height growth model using a Chapman–Richards function, utilizing the effect of inter-tree competition and stand-level top height (TH) on the tree height growth. The results showed that using chronosequence of heights, competition, and TH resulted in accurate predictions of potential tree height (root mean square error = 2.9 m; mean absolute percentage error = 0.154%). We concluded that individual tree height growth is significantly influenced by competition, with increased competition values associated with reductions in potential height growth by 22.2% at 30 years.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3