Author:
Wiltens James,Schreiber Ulrich,Vidaver William
Abstract
Algae of higher intertidal regions tend to be tolerant of extended periods of desiccation, while many lower tidal or subtidal species do not withstand even mild water loss. (Tidal regions can be characterized as high (regularly immersed at high tide and exposed at low tide), low (emergence only during minus tides (lower than mean low tide)), or subtidal (never exposed at low tide and extending to the maximum depth at which net photosynthesis can occur).) The ecological necessity for tolerance in frequently emerged species is obvious, but the physiological basis of it is not well understood. Changes of photosynthetic partial reactions upon desiccation and rehydration of tolerant and sensitive algae were studied by measurements of chlorophyll fluorescence induction kinetics (Kautsky effect). With progressive decrease in water content the gradual disappearance of the characteristic fluorescence transients was observed in both tolerant and sensitive species. The water content ranges where typical changes occurred were species dependent. Rehydration in tolerant plants resulted in rapid recovery from severe desiccation; there was no such recovery in sensitive plants when water content was decreased below a critical value. Analysis of the fluorescence changes upon desiccation and rehydration suggests: (1) electron transport between photosystem II and photosystem I, as well as H2O splitting are the partial reactions sensitive to desiccation; (2) in the resistant Porphyra sanjuanensis, intersystem electron transport is blocked at around 25% water content; (3) further desiccation leads to loss of water-splitting activity and eventually to the complete loss of variable fluorescence photosystem II reaction centers; and (4) on rehydration intersystem electron transport begins almost immediately while recovery of H2O splitting requires several minutes.
Publisher
Canadian Science Publishing