Studies on possible routes of ammonium assimilation in soybean root nodule bacteroids

Author:

Dunn Stanley D.,Klucas Robert V.

Abstract

Glutamine amide–2-oxoglutarate aminotransferase NAD+ oxidoreductase (GOGAT), glutamine synthetase (GS), glutamate dehydrogenase (GD), and alanine dehydrogenase (AD) were studied in soybean root nodules. GS, GOGAT, and AD were present in bacteroids at levels that could account for ammonium assimilation, but GD activity was quite low. The total activities of GS and GD were higher in the cytosol than in the bacteroids by factors of 20 and 7, respectively, whereas GOGAT was not detected in the cytosol. GS (transferase activity) was inhibited by alanine, CTP, glycine, and tryptophan at 5 mM but was relatively unaffected by asparagine, aspartic acid, CMP, glucosamine, and histidine at 5 mM. GOGAT activity was unaffected by ATP, ADP, 8-hydroxyquinoline, and 1,10-phenanthroline but was inhibited by EDTA, citrate, and parachloromercuribenzoate. GOGAT activity (reductive amination) was also inhibited 97% by preincubation with 10−4 M azaserine for 30 min but GD activity was inhibited only 13%. The apparent Km values for NH4+ by AD was 7.4 × 10−3 M and by GD was 7.3 × 10−2 M while for glutamine by GOGAT it was 9.3 × 10−5 M. Activities and kinetic properties for these enzymes may suggest potential routes of nitrogen assimilation in vivo.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alanine synthesized by alanine dehydrogenase enables ammonium-tolerant nitrogen fixation in Paenibacillus sabinae T27;Proceedings of the National Academy of Sciences;2022-12-02

2. Metabolism ofRhizobiumBacteroids;Critical Reviews in Plant Sciences;2003-01

3. Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules;Cellular and Molecular Life Sciences;2001-01

4. Carbon and nitrogen metabolism in Rhizobium;Advances in Microbial Physiology;2000

5. Alanine Dehydrogenase from Soybean Nodule Bacteroids: Purification and Properties;Archives of Biochemistry and Biophysics;1993-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3