Cellulase production by Acetivibrio cellulolyticus

Author:

Saddler J. N.,Khan A. W.

Abstract

Acetivibrio cellulolyticus, an isolate from an established sewage sludge culture, degraded cellulose powder, Avicel cellulose, and cellobiose. The organism showed maximum cellulose degradation in a medium containing 10 g/L of cellulose and it could also degrade cellulose in media containing up to 75 g/L of cellulose. During the exponential growth phase, large quantities of cellulolytic enzymes were found extracellularly whereas cellobiase activity was cell associated. The crude culture supernate contained endo- and exo-glucanase activities with a pH optimum at 5.0 and a temperature optimum at 50 °C. Maximum cellulase activities were detected in 2- to 3-day-old cultures grown on 1 g/L of cellulose. Cellulose concentration above 10 g/L caused the adsorption of these enzymes to the substrate and consequently lowered their detection in the supernate. The activities at 50 °C for endoglucanase, exoglucanase, and filter paper degrading ability, expressed as micrograms of glucose equivalents released per minute per milligram of protein culture supernate, were 510, 135, and 40 respectively.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3