Dual-level direct dynamics study on the hydrogen abstraction reaction of fluorine atom with 1,1-difluoro-1-chloroethane

Author:

Wang Li1,Liu Song1,He Hongqing2,Zhang Jinglai1

Affiliation:

1. Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P.R. China.

2. Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China

Abstract

The kinetic properties of the reaction of F atoms with CH2H′CF2Cl are investigated by a dual-level direct dynamics method. Optimized geometries and frequencies of all the stationary points and extra points along the minimum-energy path (MEP) are obtained at the MPW1K/6–311+G(d,p) level of theory. Two complexes with energy less than that of the reactants are located in the two reactant paths, respectively. The energy profiles of two reactions are refined with the interpolated single-point energies (ISPE) method at the G3(MP2)/MPW1K level. The rate constants are evaluated using the canonical variational transition state theory (CVT) with a small-curvature tunneling correction (SCT) over a wide range of temperature 200–2000 K. Agreement between the calculated CVT/SCT rate constant and the experimental value is good at 295 K. Our calculations show that the reaction path CH2H′CF2Cl + F → CH2CF2Cl + H′F (Ra) is the major reaction path below 400 K. Moreover, the contribution of CH2H′CF2Cl + F → CHH′CF2Cl + HF (Rb) to the whole reaction increases with the temperature increasing and exceeds path Ra to be the major reaction path.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3