The use of ion exchange resins to assess the changes in mineral element availability during the production of the cultivated mushroom Agaricus bisporus

Author:

Beyer David M

Abstract

Nutrient depletion and accumulation of toxic metabolites in compost are believed to be limiting factors and responsible for decreased yields as a mushroom crop ages. The objective of this study was to identify, monitor, and quantify mineral element levels in composted substrate and compost solution extracts during mushroom production. Mineral element changes were assessed by placing ion exchange resin bags in compost saturated paste extracts and directly in composted substrate. The concentration of most cations in compost solution increased as the crop aged. The addition of hypnum peat and rock phosphate to compost at spawning lowered potassium and magnesium concentration in compost solution, which suggested the accumulation of potassium, and possibly, magnesium may limit later yields. Compost solution extracted from hypnum peat moss and rock phosphate supplemented compost had less phosphorus in solution than unsupplemented compost, suggesting an increase in uptake of phosphorus by the mushroom mycelium increased later break yields. Resin-extracted potassium from the saturated paste extract solutions decreased until primordia formation, then increased as the crop aged. Hypnum peat and rock phosphate added to compost at spawning lowered resin-extracted potassium and increased resin-extracted calcium after casing. Most resin-extracted cations from around the mycelium in situ increased as the crop aged. IR-120-Na resins extracted more calcium and less potassium from around the mycelium in hypnum peat supplemented compost. The results suggested that calcium or potassium interfered with the nutrient uptake of phosphorus as the crop aged, thus reducing yield.Key words: Agaricus bisporus, hypnum peat, ion exchange resins, chelation, calcium, potassium, phosphorus.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3