Affiliation:
1. Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran.
2. Department of Chemistry, Tarbiat Modares University, Tehran, Iran.
Abstract
A systematic theoretical study on Mg–ligand interactions has been carried out employing both ab initio correlated wave function and density functional methods. The interactions of the Mg(CH3N2)2moiety with BF, CO, N2, NH3, and H2O ligands have been investigated by performing calculations at the B3LYP, MP2, MP4, and CCSD(T)/6–311++G(3df,3pd) levels of theory. Results indicate that the interaction energies of the Mg(CH3N2)2–L complexes increase in the order NH3 > H2O > BF > CO > N2. Symmetry-adapted perturbation theory (SAPT) analysis has been carried out to understand the nature of the forces involved in the bonding. The SAPT results indicate that the stabilities of the Mg–L interactions are attributed mainly to electrostatic effects, while induction and dispersion forces also play a significant role. The evaluated SAPT interaction energies for the Mg(CH3N2)2–L complexes are generally in good agreement with those obtained using the supermolecule CCSD(T) methods, suggesting that SAPT is a proper method to study the intermolecular interactions in these complexes. The results also suggest an explanation for the unique role of Mg2+as a carrier of water molecules that mediate enzymatic hydrolysis reactions.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献