Revised mechanism for the hydrolysis of ethers in aqueous acid

Author:

Cox Robin A.1

Affiliation:

1. 16 Guild Hall Drive, Scarborough, ON M1R 3Z8, Canada.

Abstract

It has been shown recently that many supposed reaction intermediates in aqueous media do not have lifetimes long enough for them to serve this purpose. Among these are oxygen-protonated species where the positive charge is not delocalized, primary and secondary carbocations, and the commonly written species H3O+ and HO. This means that the mechanisms for many of the organic reactions that take place in aqueous media are in need of revision. This paper concerns the acid hydrolysis of simple ethers, many of which cannot form carbocations stable enough to exist in water. Rather than an A1 process in which an oxygen-protonated species dissociates into an alcohol and a carbocation, which is then quenched by water, or an A2 process in which a water molecule or another nucleophilic species assists in this, the mechanism for most ethers is a general-acid-catalyzed process in which proton transfer to oxygen is concerted with C–O bond cleavage in cases where a stable carbocation can exist, or additionally concerted with nucleophilic attack for those cases in which stable carbocation formation is not possible. All of the cases for which rate constant data could be found in the literature are analyzed and discussed in this paper, with the exception of the hydrolyses of several azoethers, where additional hydrolysis mechanisms are possible. These will be discussed in a subsequent paper.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3