Electron energy loss processes at subelectronic excitation energies in liquids

Author:

Magee John L.

Abstract

The theory of the processes by which subexcitation electrons lose energy in molecular liquids is considered. It is convenient to classify such losses as resulting from 'indirect' and 'direct' interactions; the former interactions arise from the transient electric field of the electron and the latter from the short range quantum mechanical forces occurring in direct collisions. Indirect processes are considered at some length; Monte Carlo trajectories for electrons are generated and the Fourier spectrum of the electric displacement obtained from which energy loss to dipolar relaxation and infrared-active vibrations are estimated. A tight binding scheme is used to derive an expression for the rate of energy loss to single-phonon excitation in direct collisions; the same theoretical framework is used to discuss electron trapping by the molecules of the liquid. Finally, some attempt is made to relate the loss mechanisms considered to experimentally known facts. It is concluded that the 'direct' processes are probably dominant and that knowledge of elastic scattering is of primary importance for the construction of a satisfactory theory.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3