Renal nucleoside transporters: physiological and clinical implicationsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease.

Author:

Elwi Adam N.1234,Damaraju Vijaya L.1234,Baldwin Stephen A.1234,Young James D.1234,Sawyer Michael B.1234,Cass Carol E.1234

Affiliation:

1. Department of Oncology and the Membrane Protein Research Group, University of Alberta, Edmonton, Alta., Canada, and Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alta., Canada.

2. Astbury Centre for Structural Molecular Biology, Institute for Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK.

3. Department of Physiology and the Membrane Research Group, University of Alberta, Edmonton, Alta., Canada.

4. Department of Oncology, University of Alberta, Edmonton, Alta., Canada, and Department of Medical Oncology, Cross Cancer Institute, Edmonton, Alta., Canada.

Abstract

Renal handling of physiological and pharmacological nucleosides is a major determinant of their plasma levels and tissue availabilities. Additionally, the pharmacokinetics and normal tissue toxicities of nucleoside drugs are influenced by their handling in the kidney. Renal reabsorption or secretion of nucleosides is selective and dependent on integral membrane proteins, termed nucleoside transporters (NTs) present in renal epithelia. The 7 known human NTs (hNTs) exhibit varying permeant selectivities and are divided into 2 protein families: the solute carrier (SLC) 29 (SLC29A1, SLC29A2, SLC29A3, SLC29A4) and SLC28 (SLC28A1, SLC28A2, SLC28A3) proteins, otherwise known, respectively, as the human equilibrative NTs (hENTs, hENT1, hENT2, hENT3, hENT4) and human concentrative NTs (hCNTs, hCNT1, hCNT2, hCNT3). The well characterized hENTs (hENT1 and hENT2) are bidirectional facilitative diffusion transporters in plasma membranes; hENT3 and hENT4 are much less well known, although hENT3, found in lysosomal membranes, transports nucleosides and is pH dependent, whereas hENT4–PMAT is a H+-adenosine cotransporter as well as a monoamine–organic cation transporter. The 3 hCNTs are unidirectional secondary active Na+-nucleoside cotransporters. In renal epithelial cells, hCNT1, hCNT2, and hCNT3 at apical membranes, and hENT1 and hENT2 at basolateral membranes, apparently work in concert to mediate reabsorption of nucleosides from lumen to blood, driven by Na+gradients. Secretion of some physiological nucleosides, therapeutic nucleoside analog drugs, and nucleotide metabolites of therapeutic nucleoside and nucleobase drugs likely occurs through various xenobiotic transporters in renal epithelia, including organic cation transporters, organic anion transporters, multidrug resistance related proteins, and multidrug resistance proteins. Mounting evidence suggests that hENT1 may have a presence at both apical and basolateral membranes of renal epithelia, and thus may participate in both selective secretory and reabsorptive fluxes of nucleosides. In this review, the renal handling of nucleosides is examined with respect to physiological and clinical implications for the regulation of human kidney NTs and adenosine signaling, intracellular nucleoside transport, and nephrotoxicities associated with some nucleoside drugs.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3