mTORC1 and the regulation of skeletal muscle anabolism and mass

Author:

Adegoke Olasunkanmi A.J.1,Abdullahi Abdikarim1,Tavajohi-Fini Pegah1

Affiliation:

1. School of Kinesiology and Health Science, Muscle Health Research Centre, York University, 4700 Keele Street, Toronto ON M3J 5P3, Canada.

Abstract

The mass and integrity of skeletal muscle is vital to whole-body substrate metabolism and health. Indeed, defects in muscle metabolism and functions underlie or exacerbate diseases like diabetes, rheumatoid arthritis, and cancer. Physical activity and nutrition are the 2 most important environmental factors that can affect muscle health. At the molecular level, the mammalian target of rapamycin complex 1 (mTORC1) is a critical signalling complex that regulates muscle mass. In response to nutrition and resistance exercise, increased muscle mass and activation of mTORC1 occur in parallel. In this review, we summarize recent findings on mTORC1 and its regulation in skeletal muscle in response to resistance exercise, alone or in combination with intake of protein or amino acids. Because increased activity of the complex is implicated in the development of muscle insulin resistance, obesity, and some cancers (e.g., ovarian, breast), drugs that target mTORC1 are being developed or are in clinical trials. However, various cancers are associated with extensive muscle wasting, due in part to tumour burden and malnutrition. This muscle wasting may also be a side effect of anticancer drugs. Because loss of muscle mass is associated not only with metabolic abnormalities but also dose limiting toxicity, we review the possible implications for skeletal muscle of long-term inhibition of mTORC1, especially in muscle wasting conditions.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3