Author:
Kobeissi Hafez,Kobeissi Majida,Trad Chafia H.
Abstract
A new formulation of the Rayleigh–Schrödinger perturbation theory is applied to the derivation of the vibrational eigenvalues of the perturbed Morse oscillator (PMO). This formulation avoids the conventional projection of the Ψ corrections on the basis of unperturbed eigenfunctions [Formula: see text], or the projection of the nonhomogeneous Schrödinger equations on [Formula: see text], it gives simple expressions for each E correction [Formula: see text] free of summations and integrals. When the PMO is characterized by the potential U = UM + UP (where UM is the unperturbed Morse potential), the eigenvalue of a vibrational level ν is given by: [Formula: see text]. According to the new formulation the correction £, [Formula: see text] is given by [Formula: see text], where σp(r) is a particular solution of the nonhomogeneous differential equation y″ + f y = sp; here [Formula: see text], sp is well known for each p: for p = 0, [Formula: see text]; for [Formula: see text]. For the numerical application one single routine is used, that of integrating y″ + f y = s, where the coefficients are known as well as the initial values. An example is presented for the Huffaker PMO of the (carbon monoxide) CO-X1Σ+ state. The vibrational eigenvalues Eν are obtained to a good accuracy (with p = 4) even for high levels. This result confirms the validity of this new formulation and gives a semianalytic expression for the PMO eigenvalues.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献