Analysis of pFQ12, a 22.4-kbFrankiaplasmid

Author:

John Theodore R,Rice Jeffrey M,Johnson Jerry D

Abstract

Frankia are gram-positive, filamentous bacteria capable of fixing atmospheric dinitrogen in symbiosis with a wide variety of woody plants and shrubs. Some isolates of Frankia harbor plasmids of 8.5 (pFQ11) and 22.4 kb (pFQ12) that have no known function but are transmitted through many generations in culture. We have sequenced the 22 437-bp pFQ12 plasmid that is present in isolates CpI1 and ArI3. This sequence, with 76% G+C, is almost totally unrelated to that of pFQ11 found in the same cells. However, four regions of identity, 40-90 bp each, are dispersed around the plasmids. The 22.4-kb plasmid has >50 open reading frames (ORFs) that encode putative proteins of more than 100 amino acids, with the largest being 2226 amino acids. Twenty of these ORFs are likely to encode proteins based on their codon bias as determined by two different algorithms. Transcripts from nine of these regions have been identified by reverse transcriptase-polymerase chain reaction (RT-PCR) or filter hybridization. The two Frankia plasmids each encode a protein similar to the korSA protein that regulates transmission of pSAM2 in Streptomyces. The origin of replication (ORI) region of pFQ12 was localized by intrastrand AT and GC equivalence switch. It includes a 40-bp, intergenic, A+T-rich region that has a strong identity in pFQ11.Key words: ORI analysis, RT-PCR, Glimmer, DNA sequence.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frankia and the actinorhizal symbiosis;Molecular Aspects of Plant Beneficial Microbes in Agriculture;2020

2. Stable Transformation of the Actinobacteria Frankia spp;Applied and Environmental Microbiology;2019-08

3. Molecular Methods for Research on Actinorhiza;Methods in Rhizosphere Biology Research;2019

4. The Family Frankiaceae;The Prokaryotes;2014

5. Signalling and Communication in the Actinorhizal Symbiosis;Signaling and Communication in Plant Symbiosis;2011-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3