Anti-CD3 scFv-B7.1 fusion protein expressed on the surface of HeLa cells provokes potent T-lymphocyte activation and cytotoxicityThis paper is one of a selection of papers in this Special Issue, entitled International Symposium on Recent Advances in Molecular, Clinical, and Social Medicine, and has undergone the Journal's usual peer-review process.

Author:

Yang Zhang-Min12,Li En-Min12,Lai Bao-Chang12,Wang Yi-Li12,Si Lu-Sheng12

Affiliation:

1. Department of Biochemistry and Molecular Biology, Medical College, Shantou University, Shantou 515041, PR. China.

2. Institute for Cancer Research, College of Life Science & Technology, Xi'an Jiaotong University, Xi'an 710061, PR. China.

Abstract

The targeting of tumor cells by cytotoxic T lymphocytes is a promising strategy for biotherapy, but T cells require 2 signals via the T-cell receptor – CD3 complex and CD28 molecules for activation. To bridge the gap between cytotoxic T lymphocytes and tumor cells, our objective in this study was to describe the construction and the cell surface-anchored expression of a fusion protein, anti-CD3 scFv-B7.1, derived from inserting a fusion gene encoding anti-CD3 scFv and the extra-cellular domain of B7.1 fused by the splicing by overlap extension method into a mammalian expression vector, pDisplay. Transfection of the recombinant vector by electroporation into HeLa cells resulted in the production of protein migrating at approximately 57 kDa under reducing conditions. The expressed fusion protein could bind to T lymphocytes and induce strong T-cell activation. Meanwhile, a potent cytotoxicity was induced in the mixed culture of T-cell-modified tumor cells in a 96 h methyl-thiazolyl-diphenyl tetrazolium bromide assay. Our results indicate that this bifunctional protein, through activating T lymphocytes to lyse homologous human carcinomas, may be of potential value for T-cell-based immunotherapeutical treatment protocols in vivo.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3