Chaotic electron dynamics in a FEL with realizable quadrupole wiggler and Gaussian electron beam

Author:

Taghavi Amin1ORCID,Esmaeilzadeh Mahdi2

Affiliation:

1. Department of Physics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

2. Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran

Abstract

Chaotic motion of electrons causes a considerable decrease in gain and efficiency of free-electron lasers (FELs). In this paper, we study chaotic dynamics of electrons moving with relativistic velocity in a realizable (three-dimensional) quadrupole wiggler when the radial dependency of wiggler magnetic field is fully taken into account using time series, Poincaré surface-of-section maps, and Liapunov exponents. The electron beam is also considered to be realizable with Gaussian density profile and an ion channel is considered as a guiding device for the electron beam. We show that the chaotic behavior of electron motion is due to the nonlinearity of quadrupole wiggler magnetic field and the chaotic electron motion occurs at almost large radial distances in which the wiggler magnetic field is large. Also, we find that one can control the electron chaotic motion by using electron beam with Gaussian density rather than the electron beam with uniform density. Furthermore, we investigate the effect of ion channel and find that when the electrostatic force of ion channel overcomes the nonlinearity effect of quadrupole wiggler magnetic field and self-repulsive force arises from electron beam, the electron motion becomes non-chaotic. We also investigate the electron motion under Budker condition and show that the Budker condition cannot guarantee the electron motion becoming completely non-chaotic.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3