Abstract
A practical science has not been fully developed for unsaturated soils for two main reasons. First, there has been the lack of an appropriate science with a theoretical base. Second, there has been the lack of an appropriate technology to render engineering practice financially viable.This paper presents concepts that can be used to develop an appropriate engineering practice for unsaturated soils. The nature of an unsaturated soil is first described along with the accompanying stress conditions. The basic equations related to mechanical properties are then proposed. These are applied to practical problems such as earth pressure, limiting equilibrium, and volume change.An attempt is made to demonstrate the manner in which saturated soil mechanics must be extended when a soil is unsaturated. Two variables are required to describe the stress state of an unsaturated soil (e.g., (σ – ua) and (ua – uW). There is a smooth transition from the unsaturated case to the saturated case since the pore-air pressure becomes equal to the pore-water pressure as the degree of saturation approaches 100%. Therefore, the matrix suction (i.e., (ua – uW) goes to 0 and the pore-water pressure can be substituted for the pore-air pressure (i.e., (σ – uW)).The complete volumetric deformation of an unsaturated soil requires two three-dimensional constitutive surfaces. These converge to one two-dimensional relationship for a saturated soil. The shear strength for an unsaturated soil is a three-dimensional surface that reduces to the conventional Mohr–Coulomb envelope for a saturated soil.The manner of applying the volumetric deformation equations and the shear strength equation to practical problems is demonstrated. For earth pressure and limiting equilibrium problems, the unsaturated soil can be viewed as a saturated soil with an increased cohesion. The increase in cohesion is proportional to the matrix suction of the soil. For volume change problems it is necessary to have an indication of the relationship between the various soil moduli.There is a need for further experimental studies and case histories to substantiate the proposed concepts and theories.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
163 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献