Author:
Tremblay R,Côté B,Léger P
Abstract
Three different amplification factors that have been proposed to account for P-Δ effects in the seismic design of multistorey building structures are described and compared. Nonlinear dynamic analyses of a typical 20-storey steel moment resisting frame are carried out under earthquake ground motions typical of eastern and western Canada to evaluate the gravity load effects and to assess the effectiveness of each type of amplification factor in accounting for these effects. All three approaches maintain the ductility demand within the level computed without P-Δ effects, but lateral deformations are generally larger than those obtained neglecting the gravity loads. Nonlinear dynamic analyses are also performed on a shear-beam (stick) model of the same building to examine the possibility of using such simple models for studying the dynamic stability of buildings subjected to ground motions. The shear-beam model does not predict adequately the seismic behaviour of steel moment resisting frames for which P-Δ effects are significant.Key words: ductility, earthquake, ground motion, lateral deformation, moment resisting frame, P-Δ effects, push-over analysis, seismic, shear-beam model, stability coefficient, amplification factor.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献