Kinetics and mechanism of the hydrolysis of a (5,6)-spirophosphorane. Thermodynamics of the hydrolysis of cyclic five-membered and six-membered phosphonium ions

Author:

McGall Glenn H.,McClelland Robert A.

Abstract

The cyclic five-membered phosphonium ion 2b (2-(2′-hydroxyethoxy)-2-phenyl-1,3,2-dioxaphospholan-2-ylium) derived from ring-opening of the (5,5)-spirophosphorane 1b (5-phenyl-1,4,6,9-tetraoxa-5-phosphaspiro[4,4]nonane) has been observed in neat CF3SO3H and at >85% H2SO4. The cation undergoes hydrolysis in the latter solutions, and an extrapolation has been carried out to obtain an estimate for reactivity in 100% water. Hydrolysis rate constants for phenyltrialkoxyphosphonium ions in water are 107, 100, and 5 × 10−3 s−1 for cyclic five-membered, cyclic six-membered, and acyclic derivatives respectively; these show an excellent correlation with rate constants for a similar series of phosphate esters. An investigation of the hydrolysis of the (5,6)-spirophosphorane 5 (5-phenyl-8,8-dimethyl-1,4,6,10-tetraoxa-5-phosphaspiro[4,5]decane) provides a clue as to the origins of these rate differences. This phosphorane can in principle hydrolyze via two isomeric cyclic phosphonium ions, the six-membered 14 and the five-membered 15. The former is thermodynamically more stable, being the only cation observed under equilibrating conditions of strong acid. However, the hydrolysis of the spirophosphorane, as well as the hydrolysis of fully formed 14, channels through the cyclic five-membered 15. A thermodynamic breakdown reveals that the 9.5 kcal mol−1 difference in activation free energy for the hydrolysis of five- and six-membered cyclic phosphonium ions is due to a combination of a higher free energy (2.5–4.5 kcal mol−1) for the five-membered cation, and a lower free energy (7–5 kcal mol−1) for the pentacoordinate transition state with the five-membered ring. This analysis also shows that a (5,6)-spirophosphorane is 6–8 kcal mol−1 more stable than a (6,6)-spirophosphorane. Thus, a five-membered ring has a significant stabilizing effect on a pentacoordinated phosphorus structure. The accelerated hydrolysis of cyclic phosphonium ions and phosphate esters with five-membered rings is caused by a combination of this stabilizing effect in the transition state and a destabilizing effect in the ground state associated with ring strain. Key words: phosphorane, hydrolysis, phosphate, phosphonium.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3