Purification and characterization of the heat-labile α-amylase secreted by the psychrophilic bacterium TAC 240B

Author:

Chessa Jean-Pierre,Feller Georges,Gerday Charles

Abstract

A total of 59 bacteria samples from Antarctic sea water were collected and screened for their ability to produce α-amylase. The highest activity was recorded from an isolate identified as an Alteromonas species. The purified α-amylase shows a molecular mass of about 50 000 Da and a pI of 5.2. The enzyme is stable from pH 7.5 to 9 and has a maximal activity at pH 7.5. Compared with other α-amylases from mesophiles and thermophiles, the "cold enzyme" displays a higher activity at low temperature and a lower stability at high temperature. The psychrophilic α-amylase requires both Cl-and Ca2+for its amylolytic activity. Br-is also quite effecient as an allosteric effector. The comparison of the amino acid composition with those of other α-amylases from various organisms shows that the cold α-amylase has the lowest content in Arg and Pro residues. This could be involved in the principle used by the psychrophilic enzyme to adapt its molecular structure to the low temperature of the environment. Key words: α-amylase, psychrophilic microorganisms, Antarctic.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3