Capturing expert knowledge for ecosystem mapping using Bayesian networks

Author:

Walton Adrian,Meidinger Del

Abstract

Large-scale ecosystem maps are essential tools for managers of forest-related activities. In British Columbia, the prevailing approach for ecosystem mapping has been to use an expert system that captures expert knowledge in the form of a belief matrix. In this project, a Bayesian network rather than a belief matrix was used in an attempt to overcome some of the drawbacks of the belief-matrix approach. A Bayesian-network knowledge base was created for each of the following three biogeoclimatic variants: montane very wet maritime coastal western hemlock (CWHvm2), submontane very wet maritime coastal western hemlock (CWHvm1), and central very wet hypermaritime coastal western hemlock (CWHvh2), and applied to a study area encompassing Prince Rupert. A map of ecosystems by grouping site series was produced using each of the knowledge bases. Accuracy assessments performed on each of the maps of grouped site series revealed that the maps poorly predicted the spatial distribution of uncommon and very wet site-series groups. For example, overall map accuracy for the CWHvm2, CWHvm1, and CWHvh2 variants was 47.8%, 50.3%, and 33.3%, respectively. The results of the map-accuracy assessment, however, were consistent with those resulting from a belief-matrix approach conducted in an earlier study. We feel that Bayesian network knowledge bases are easier to develop, interpret, and update than belief matrices.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3