Author:
Tschaplinski T.J.,Tuskan G.A.,Gunderson C.A.
Abstract
Water-stress tolerance of six clones in a pedigree consisting of black cottonwood (Populustrichocarpa Torr. & Gray, female) and eastern cottonwood (Populusdeltoides Bartr., male) parental clones and four hybrid progeny was investigated. Trees were grown outdoors in pots; well-watered trees were kept moist (soil water potential greater than −0.03 MPa), and stressed trees (soil water potential less than −2.0 MPa) were subjected to repeated cyclical stress of 1 or 2 days duration over the 14-week study. Male P. deltoides and the male clone 242 displayed the greatest degree of stress tolerance, as evidenced by greater osmotic adjustment at saturation (0.25 MPa) and maintenance of relative growth rate of the main stem under water stress at 100 and 69% of that of well-watered trees, respectively, compared with reductions to 50–58% for the other hybrid clones. However, differences in total plant dry weight under water stress were less obvious, with female clones allocating more carbon to branch production under well-watered conditions, which was further increased under water stress. Three of the four hybrids displayed some degree of osmotic adjustment at saturation after bud set, which was likely conferred by male P. deltoides. Screening clones of Populus for drought tolerance should take into account the segregating tendency of hybrids to allocate carbon to lateral meristems under stress.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献