Changed cycling of P, N, Si, and DOC in Danish Lake Nordborg after aluminum treatment

Author:

Egemose Sara1,de Vicente Inmaculada2,Reitzel Kasper1,Flindt Mogens R.1,Andersen Frede Ø.1,Lauridsen Torben L.3,Søndergaard Martin3,Jeppesen Erik3,Jensen Henning S.1

Affiliation:

1. Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

2. Water Research Institute, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain.

3. National Environmental Research Institute, Department of Freshwater Ecology, Aarhus University, Vejlsøvej 25, DK- 8600 Silkeborg, Denmark.

Abstract

Loading, retention, and in-lake cycling of phosphorus (P), nitrogen, silica, and dissolved organic carbon (DOC) were studied 1 year before and 3 years after P-inactivation by aluminum (Al) hydroxide in Danish Lake Nordborg in 2006. Simultaneously, external P loading was reduced by 40% via establishment of precipitation ponds in two inlets. After Al treatment, the internal P loading (sediment P release) during summer declined 90%–94%, owing to adsorption to aluminum hydroxide. Also, silicate regeneration from the sediment was reduced by 69%–76%, and sediment oxygen uptake as well as ammonium release declined markedly. Consequently, lake water total P, dissolved inorganic P, silicate, and DOC decreased by 73%, 97%, 87%, and 46%, respectively. The Secchi depth increased in the summer period during the first post-treatment year, but declined afterwards to pre-treatment levels, even though the mean lake-water total P concentration during summer was reduced from ∼240 µg·L–1 before treatment to 26–65 µg·L–1 in the first three post-treatment years. We conclude that a further reduction in external P loading is needed to obtain the full effect of the Al treatment in Lake Nordborg.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3