Desiccation-induced cracking and its effect on the hydraulic conductivity of clayey soils from Iran

Author:

Rayhani M HT,Yanful E K,Fakher A

Abstract

Clay materials have many environmental applications, especially in situations where a hydraulic barrier is desired. However, as the plasticity of clay increases, cracks tend to develop during cycles of long dry spells. This is particularly a concern in the construction of covers or installation of landfill liners prior to waste filling. In the present study, specimens prepared from three natural clayey soils from Iran used for clay barrier construction, and one artificial clayey soil, were subjected to cycles of wetting and drying. Surface cracks of different dimensions formed as a result of drying. Specimens with the largest volumetric shrinkage strains typically contained the highest number of cracks. Specimens that developed cracks were subjected to hydraulic conductivity testing. The results showed that the dimension of cracks increased with increasing plasticity index and clay content and, so, the initial hydraulic conductivity increased with increasing plasticity index and cycles of drying and wetting. Cracking increased the hydraulic conductivity by 12–34 times, depending on the plasticity of the soil. After a long saturation time, the hydraulic conductivity of the soils decreased with an increase in saturation time, which could be associated with a self-healing process that affects the soils by different degrees.Key words: desiccation, cracking, plasticity, hydraulic conductivity, clay barriers, self-healing, volumetric shrinkage.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3