Brain natriuretic peptide appears to act locally as an antifibrotic factor in the heart

Author:

Ogawa Yoshihiro,Tamura Naohisa,Chusho Hideki,Nakao Kazuwa

Abstract

In addition to cardiac myocyte hypertrophy, proliferation and increased extracellular matrix production of cardiac fibroblasts occur in response to cardiac overload. This remodeling of the cardiac interstitium is a major determinant of pathologic hypertrophy leading to ventricular dysfunction and heart failure. Atrial and brain natriuretic peptides (ANP and BNP) are cardiac hormones produced primarily by the atrium and ventricle, respectively. Plasma ANP and BNP concentrations are elevated in patients with hypertension, cardiac hypertrophy, and acute myocardial infarction, suggesting their pathophysiologic roles in these disorders. ANP and BNP exhibit diuretic, natriuretic, and vasodilatory activities via a guanylyl cyclase-coupled natriuretic peptide receptor subtype (guanylyl cyclase-A or GC-A). Here we report the generation of mice with targeted disruption of BNP (BNP–/– mice). We observed focal fibrotic lesions in ventricles from BNP–/– mice with a remarkable increase in ventricular mRNA expression of ANP, angiotensin converting enzyme (ACE), transforming growth factor (TGF)-β3, and pro-α1(I) collagen [Col α1(I)], which are implicated in the generation and progression of ventricular fibrosis. Electron microscopic examination revealed supercontraction of sarcomeres and disorganized myofibrils in some ventricular myocytes from BNP–/– mice. No signs of cardiac hypertrophy and systemic hypertension were noted in BNP–/– mice. In response to acute cardiac pressure overload induced by aortic constriction, massive fibrotic lesions were found in all the BNP–/– mice examined, accompanied by further increase of mRNA expression of TGF-β3 and Col α1(I). We postulate that BNP acts as a cardiocyte-derived antifibrotic factor in the ventricle.Key words: atrial natriuretic peptide, brain natiuretic peptide, cardiac fibrosis, guanylyl cyclase.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3