Coronary circulatory pressure gradients

Author:

Klassen Gerald A.,Armour J. Andrew,Garner J. Barry

Abstract

The pressure gradients of the canine coronary circulation were measured in 37 dogs during control and following eight interventions: left stellate ganglion or left vagosympathetic trunk stimulation, as well as isoproterenol, acetylcholine, noradrenaline, adenosine, phenylephrine, or adrenaline infusions. During control, pressure gradients in the epicardial coronary arteries (measured from the aorta to coronary artery branch) were 15.2 ± 1 mmHg(1 mmHg = 133.32 Pa) during systole and 10.6 ± 1.5 mmHg during diastole. Adrenaline increased this systolic gradient, while acetylcholine and phenylephrine decreased it. In contrast, the pressure gradients in the small coronary arteries (from the branch of an epicardial artery to the pressure in an obstructed coronary artery) were 56 ± 1.3 mmHg during systole and 63.7 ± 1.3 mmHg during diastole. These gradients were increased by phenylephrine during both systole and diastole, noradrenaline and adrenaline during diastole and decreased by isoproterenol (systolic), left vagosympathetic trunk stimulation (diastolic), acetylcholine (systolic and diastolic), and adrenosine (diastolic). The microcirculation and small vein gradients during control were 16.4 ± 1.2 mmHg during systole and 8.5 ± 0.8 mmHg during diastole. Decreases in this gradient were produced by isoproterenol, acetylcholine, and adenosine during systole and adenosine during diastole. These observations are consistent with the concept that the coronary circulation has considerable regulatory capacity in all of its component parts. Specifically, epicardial arteries appear to function as both conduits and as resistance vessels, small arteries as major resistance vessels, and the microcirculation and small veins as both capacitors and resistors.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3