Chromosome constitution and origin analysis in three derivatives of Triticum aestivum – Leymus mollis by molecular cytogenetic identification

Author:

Yang Xiaofei11,Wang Changyou11,Chen Chunhuan11,Zhang Hong11,Tian Zengrong11,Li Xin11,Wang Yajuan11,Ji Wanquan11

Affiliation:

1. College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.

Abstract

Leymus mollis (2n = 4x = 28, NsNsXmXm) is an important tetraploid species in Leymus (Poaceae: Triticeae) and a useful genetic resource for wheat breeding because of the stress tolerance and disease resistance of this species. The development of Triticum aestivum (common wheat) – L. mollis derivatives with desirable genes will provide valuable bridge materials for wheat improvement, especially regarding powdery mildew resistance genes, which are rarely documented in L. mollis. In the present study, three derivatives of common wheat cultivar 7182 and L. mollis, namely M47, M51, and M42, were subjected to chromosomal characterization via cytogenetic identification, the analysis of molecular markers, and genomic in situ hybridization. These derivatives were all morphologically and cytogenetically stable. M47 was highly resistant to powdery mildew and nearly immune to stripe rust at the adult stage, and the chromosome constitution of this derivative can be expressed as 2n = 56 = 42T.a + 14L.m (where T.a = T. aestivum chromosomes; L.m = L. mollis chromosomes). Compared to M47, M42 was also resistant to stripe rust but was susceptible to powdery mildew; the chromosome constitution of M42 was 2n = 54 = 42T.a + 12L.m, in which a pair of homoeologous group 7 L.m chromosomes was eliminated. Finally, M51 was susceptible to powdery mildew and stripe rust and had a chromosome constitution of 2n = 48 = 42T.a + 6L.m, in which four pairs of L.m chromosomes from homoeologous groups 2, 4, 5, and 7 were eliminated. The differing disease resistances of the three derivatives are discussed in this report in the context of their chromosomal variations; this information can thus contribute to breeding disease resistant wheat with the potential for applying these derivatives as useful bridge materials.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3