Analytical solutions for calculating pore-water pressure in an infinite unsaturated slope with different root architectures

Author:

Ng C.W.W.11,Liu H.W.11,Feng S.11

Affiliation:

1. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Abstract

Vegetation can reduce pore-water pressure in soil by root water uptake. The reduction of pore-water pressure results in higher shear strength, but lower soil water permeability, affecting slope stability and rainfall infiltration, respectively. Effects of different root architectures on root water uptake and hence pore-water pressure distributions are not well understood. In this study, new analytical solutions for calculating pore-water pressure in an infinite unsaturated vegetated slope are derived for different root architectures, namely, uniform, triangular, exponential, and parabolic root architectures. Using the newly developed solutions, four series of analytical parametric analyses are carried out to improve understanding of the factors affecting root water uptake and hence influencing pore-water pressure distributions. In the dry season, different root architectures can lead to large variations in pore-water pressure distributions. It is found that the exponential root architecture induces the highest negative pore-water pressure in the soil, followed by the triangular, uniform, and parabolic root architectures. The maximum negative pore-water pressure induced by the parabolic root architecture is about 77% of that induced by the exponential root architecture in the steady state. For a given root architecture, vegetation in completely decomposed granite (CDG, classified as silty sand) induces higher negative pore-water pressure than in either fine sand or silt. The zone influenced by vegetation can be about three to six times the root depth. In the wet season, after a 10 year return period rainfall with a duration of 24 h, different root architectures show similar pore-water pressure distributions.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference33 articles.

1. Chiu, C.F. 2001. Behaviour of unsaturated loosely compacted weathered materials, Ph.D. thesis, Hong Kong University of Science and Technology, Hong Kong.

2. COMSOL 4.3b. 2013. COMSOL multiphysics reference manual. COMSOL, Inc., Stockholm, Sweden.

3. Using Three-dimensional Plant Root Architecture in Models of Shallow-slope Stability

4. Deep Phenotyping of Coarse Root Architecture in R. pseudoacacia Reveals That Tree Root System Plasticity Is Confined within Its Architectural Model

5. Impact of root architecture on the erosion-reducing potential of roots during concentrated flow

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3