Prediction of the variation of swelling pressure and one-dimensional heave of expansive soils with respect to suction using the soil-water retention curve as a tool

Author:

Tu Hongyu11,Vanapalli Sai K.11

Affiliation:

1. Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Abstract

The one-dimensional (1-D) potential heave (or swell strain) of expansive soil is conventionally estimated using the swelling pressure and swelling index values that are determined from different types of oedometer test results. The swelling pressure of expansive soils is typically measured at saturated condition from oedometer tests. The experimental procedures of oedometer tests are cumbersome as well as time-consuming for use in conventional geotechnical engineering practice and are not capable of estimating heave under different stages of unsaturated conditions. To alleviate these limitations, semi-empirical models are proposed to predict the variation of swelling pressure of both compacted and natural expansive soils with respect to soil suction using the soil-water retention curve (SWRC) as a tool. An empirical relationship is also suggested for estimating the swelling index from plasticity index values, alleviating the need for conducting oedometer tests. The predicted swelling pressure and estimated swelling index are then used to estimate the variation of 1-D heave with respect to suction for expansive soils by modifying Fredlund’s 1983 equation. The proposed approach is validated for eight field sites from six countries — namely, Saudi Arabia, Australia, Canada, China, USA, and UK — and on six different compacted expansive soils from USA.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference84 articles.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3