Shaft resistance of driven cast-in-situ piles in sand

Author:

Flynn Kevin N.12,McCabe Bryan A.2

Affiliation:

1. AGL Consulting, Sandyford, Dublin 18, Ireland.

2. College of Engineering and Informatics, National University of Ireland, Galway, Ireland.

Abstract

Driven cast-in-situ (DCIS) piles are classified as a large displacement pile, despite sharing certain aspects of their construction with replacement pile types. However, there are relatively few case histories of load tests on DCIS piles in the literature to verify the assumption that they behave as large displacement piles. In particular, the shaft resistance of DCIS piles in sand is uncertain due to the complex interaction between the freshly cast concrete and surrounding displaced soil after extraction of the steel installation tube. This paper describes the installation, curing, and maintained compression load testing of three temporary-cased DCIS test piles at a uniform sand site near Coventry, United Kingdom. The piles were instrumented with vibrating wire strain gauges to enable accurate measurement of the local shear stress generated on the pile shaft during maintained compression loading. The tests showed that the peak average and local shear stresses tended to mobilize at greater shaft displacements than traditional preformed displacement piles during loading. A clear reduction in normalized local shear stresses (and hence radial effective stress) at failure with distance from the pile base, i.e., friction fatigue, was evident for all piles, implying that radial stresses generated during driven installation of the steel tube are not erased upon concreting and tube withdrawal. Furthermore, the inferred normalized radial effective stresses at failure were remarkably similar to those reported for traditional preformed displacement piles in the literature.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference24 articles.

1. Modelling load–displacement response of driven piles in cohesionless soils under tensile loading

2. Measured and Predicted Axial Response of 98 Piles

3. BSI. 1986. BS 8004 - Code of practice for foundations. British Standards Institution, London, UK.

4. Chow, F.C. 1997. Investigations into the behaviour of displacement piles for offshore foundations. Ph.D. thesis, University of London (Imperial College), London, UK.

5. Long-Term Monitoring of Strain in Instrumented Piles

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3