Measuring unsaturated soil deformations during triaxial testing using a photogrammetry-based method

Author:

Li Lin1,Zhang Xiong1,Chen Gang2,Lytton Robert3

Affiliation:

1. Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775-1157, USA.

2. Department of Mining and Geological Engineering, University of Alaska Fairbanks, AK 99775-5880, USA.

3. Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA.

Abstract

When characterizing an unsaturated soil using the triaxial test apparatus, it is required to measure the soil deformation during loading. Recently, a photogrammetry-based method has been developed for total and localized volume change measurements on unsaturated soils during triaxial testing. In this study, more in-depth discussions on the photogrammetry-based method are addressed, such as system setup, the measurement procedure, accuracy self-check, data post-processing, and differences from conventional image-based methods. Also, an application of the photogrammetry-based method on unsaturated soil deformation measurements is presented through a series of undrained triaxial tests with different loading paths. After testing, three-dimensional (3D) models of the tested soils at different loading steps were constructed based on the 3D coordinates of measurement targets on the soil surface. Clear barreling processes for soils during deviatoric loading were observed through the constructed 3D models at different axial strain levels. Soil volume changes and volumetric strain nonuniformities during isotropic and deviatoric loadings were extracted based upon detailed analyses of different soil layers. Through a full-field strain distribution analysis, a shear band evolution process was captured for the soil during deviatoric loading at a low confining stress. The photogrammetry-based method proved to be very powerful for in-depth soil deformation characteristics investigation.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3