Systolic pressure gradients between the wall of the left ventricle, the left ventricular chamber, and the aorta during positive inotropic states: implications for left ventricular efficiency

Author:

Butler C. K.,Wong A. Y. K.,Armour J. A.

Abstract

To study systolic pressure gradients developed between the left ventricular wall, its chamber, and the aortic root, in one group of dogs left ventricle ventral wall intramyocardial pressure, left ventricular outflow tract pressure, and aorta pressure were compared with aortic flow as well as left ventricular dimension changes during control conditions as well as during positive intropic states induced by isoproterenol, stellate ganglion stimulation, and noradrenaline. In another group of dogs systolic pressures in the ventral wall of the left ventricle, the main portion of the left ventricular chamber, and the aorta were compared with aortic flow during similar interventions, before and after the administration of phentolamine. Pressure gradients between the wall of the left ventricle and the outflow tract of the left ventricle were minimal during control states, but during the three positive inotropic states were increased significantly. In contrast, pressure gradients between the outflow tract of the left ventricle and the aortic root were insignificant during positive inotropic states; those between the wall and main portion of the chamber were only significantly different during left stellate ganglion stimulation. The data derived from these experiments indicate that useful peak power output of the left ventricle (systolic aortic pressure × flow) is unchanged following isoproterenol infusion, but is increased by stellate ganglion stimulation and noradrenaline. The useful peak power output index (an index of left ventricular efficiency derived by dividing useful peak power output by peak intramyocardial pressure) was reduced more by isoproterenol than the other two interventions. It is concluded that the product of aortic flow and pressure does not accurately indicate the efficiency of the heart during hyperdynamic states. Second, a derived momentum equation indicates that the relatively large pressure gradients which develop between the main chamber of the left ventricle and the aortic root during positive inotropic states are due primarily to fluid dynamic changes and internal dimension changes within the chamber.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3