Development of fiber reinforced concrete repair materials

Author:

Banthia N,Gupta R,Mindess S

Abstract

Early age shrinkage cracking remains a critical concern for cement-based repairs and overlays. Fibers mitigate such cracking, but no standardized technique of assessing the performance of a given fiber exists. Recently, a novel technique of making such an assessment was developed at The University of British Columbia (UBC). In this test method, currently being balloted through the ASTM, an overlay of fiber reinforced concrete (FRC) material to be tested is cast directly on a fully matured sub-base with protuberances, and the entire assembly is subjected to controlled drying. Cracking in the overlay is then monitored and characterized. The technique was recently employed to develop "crack-free" overlay materials for two repair sites. One was a parking garage in Downtown Vancouver, British Columbia, and the other was the plaza deck at The UBC Aquatic Center. For the parking garage, a carbon fiber reinforced concrete and for the plaza deck, a cellulose fiber reinforced concrete were developed. Both overlays were instrumented with strain sensors and data were monitored over the Internet.Key words: fiber reinforced concrete, shrinkage cracking, strain monitoring, carbon fibers, cellulose fibers.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3