Low temperature fluid alteration of oceanic layer 2 basalts, DSDP Leg 37

Author:

Andrews A. J.

Abstract

Penetration of cold seawater into layer 2 of the oceanic crust occurs to at least 600 m, the maximum depth drilled below the sediment-acoustic basement boundary during Leg 37 of the DSDP. The main alteration phases are Mg-saponite, Fe-K rich celadonite, phillipsite, calcite, and hematite. The only exception to this occurs in the form of intensely hydrothermally altered gabbro breccias from an intrusive complex at site 334. There is no mineralogical evidence to suggest an increase in metamorphic grade with depth; however, a variation in mineralogy and alteration intensity, occurs as a function of structure, permeability, and the chemical nature of rock-fluid interaction. On this basis three types of alteration are defined as follows: (A) fracture focussed, oxidative; (B) palagonitic; and (C) non-oxidative, pervasive.Electron microprobe analyses reveal that alteration of fresh glass to palagonite involves the addition of H2O, an increase in total Fe, K2O, TiO2, and possibly SiO2, and the loss of CaO, MgO, Na2O, and MnO.Detailed examination of the mineralogy and chemistry of oxidative alteration suggests that during low temperature sea water–basalt interaction, basalt experiences a net gain in CaO, total Fe and K2O, while SiO2 and MgO appear to have been locally remobilized. These trends are generally consistent with the distribution of secondary phases. The distributions of Mn, Cu, Ni, Zn, Co, and Sr do not appear to have been significantly affected during this process.It is apparent that seawater must have experienced significant Eh lowering during this interaction; however, the occurrence of hematite–magnetite and absence of sulphide in this particular environment requires that seawater was either highly depleted in total sulfur or experienced a significant rise in pH.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3