Geochemistry of late (~ 1.1 Ga) fluid inclusions in rocks of the Kapuskasing Archean crustal section

Author:

Channer D. M. DeR.,Spooner E. T. C.

Abstract

Three outcrops, well constrained by geochronological and structural studies, and representing a traverse running from tonalite-dominated outcrops in the eastern Wawa gneiss terrane to high-grade granulites of the Kapuskasing structural zone, were mapped and sampled in detail in order to study the trapped fluids. All fluid inclusions in quartz are secondary and consist mostly of CO2-dominated (type II) and saline aqueous (type IIIa) fluids usually occurring on separate healed fractures but also coexisting on some fractures. Healed fractures in quartz contain fluid inclusions but are associated with carbonate–sericite alteration where they pass into adjacent mineral grains. Homogeneous H2O–CO2–salt fluid inclusions (type Ia) in carbonate-rich veins of probable Keweenawan (~ 1.1 Ga) age were trapped at 400–550 °C and ambient pressures of 1.5–2 kbar (1 kbar = 100 MPa). As these fluids cooled on penetration into cool (~ 200 °C) country rocks along fractures they underwent open-system H2O-CO2 phase separation from ~ 350 °C down to ~ 190 °C, producing a range of fluid compositions, including physically segregated CO2-rich (type II) and H2O–salt–rich (type IIIa). Combined gas and ion chromatographic bulk fluid inclusion analyses show that fluid types II and IIIa are not related to shield brines. Br/Cl ratios of samples containing phase-separated fluids are similar to the Br/Cl ratio of fluids in the carbonate-rich vein. The results of this study show that Keweenawan alkalic magmatism caused widespread carbonate alteration throughout the Kapuskasing structural zone and Wawa gneiss domain. The CO2 component of the fluids is probably magmatic in origin, whereas the aqueous part could also be magmatic or, alternatively, formation waters activated by Keweenawan magmatism.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3