Impact of zinc and zinc oxide nanoparticles on the physiological and biochemical processes in tomato and wheat

Author:

Amooaghaie Rayhaneh1,Norouzi Maryam1,Saeri Mohammad2

Affiliation:

1. Biology Department, Science Faculty, Shahrekord University, Shahrekord, Iran.

2. Material engineering Department, Shahrekord University, Shahrekord, Iran.

Abstract

In this study, the effects of various concentrations of zinc and zinc oxide nanoparticles (nZn, nZnO) were evaluated in tomato and wheat. Results showed that at lower concentrations, nZn and nZnO augmented seed germination and growth parameters, whereas with higher concentrations, the nanoparticles reduced these traits. Zn concentrations corresponding to Zn dissolved (3–23 mg Zn·L−1) from nanoparticles (NPs) did not significantly affect the germination indices in either species. Compared with the bulk counterparts of ZnO, NPs exerted more toxicity on seed germination, growth parameters, and chlorophyll and carotenoid contents, and also increased Zn bioaccumulation more. More often than not, nZnO provoked more adverse symptoms than nZn at equivalent concentrations. In both species, the Zn accumulation in roots and shoots followed the order: Zn2+ ions > nZn > nZnO > bulk ZnO > control. Exposure to 200 mg Zn·L−1 nZn and nZnO increased H2O2 accumulation and malondealdehyde (MDA) levels, which were more pronounced in tomato than wheat. The results suggested that the toxicity of NPs could be due to the particle itself, or from the Zn2+ ions dissolved from NPs. Moreover, nanotoxicity, like other stresses, caused oxidative stress in both plants, and the differences in proline accumulation and the antioxidant enzyme activities of leaves, especially APX activity, at least in part, explained the higher sensitivity of tomato to NPs than wheat.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference55 articles.

1. [13] Catalase in vitro

2. The combined effect of gibberellic acid and long time osmopriming on seed germination and subsequent seedling growth of Klussia odoratissima Mozaff.

3. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles

4. Role of hematin and sodium nitroprusside in regulating Brassica nigra seed germination under nanosilver and silver nitrate stresses

5. Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., José-Yacamán, M., Peralta-Videa, J.R., and Gardea-Torresdey, J.L. 2015. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci. Total Environ. 515–516: 60–69. 10.1016/j.scitotenv.2015.02.014. 25698520.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3