Germination characteristics ofGymnocalycium monvillei(Cactaceae) along its entire altitudinal range

Author:

Bauk Karen1,Flores Joel2,Ferrero Cecilia1,Pérez-Sánchez Reyes3,Las Peñas M. Laura1,Gurvich Diego E.1

Affiliation:

1. Instituto Multidisciplinario de Biología Vegetal (Universidad Nacional de Córdoba, FCEFyN, CONICET–UNC), Avenida Vélez Sarsfield 1611, CC495, CP5000, Córdoba, Argentina.

2. Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José No. 2055., Col. Lomas 4a Sección, C.P. 78216, San Luis Potosí, S.L.P., México.

3. Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, A.P. 41, Carretera Nacional No. 85, Km 145, C.P. 67700, Linares, N.L., México.

Abstract

Germination characteristics are important for understanding how species cope with environmental variation. The aims of this work were to analyze the effect of different temperatures (25 and 32 °C), water potentials (0, −0.2, −0.4, and −0.6 MPa), and light conditions (light vs. darkness) on the germination of five populations of the cactus Gymnocalycium monvillei (Lem.) Britton & Rose along its entire altitudinal distribution. The experiments to assess the effects of temperature, water potential, and light conditions were performed in germination chambers, and total germination (%) and mean germination time (T50) were recorded. Germination decreased in provenances from higher to lower altitudes, and the effect was very pronounced at temperatures of 32 °C. For all of the altitudinal provenances, germination decreased with lower water potential, with this effect being more pronounced at 32 °C. On the other hand, provenances at lower altitudes were less affected by lower water potentials than higher provenances. Provenances at all altitudes showed very low germination under dark conditions. T50did not vary among altitudinal provenances at a temperature of 25 °C, but at 32 °C germination was slower at intermediate altitudes. Our results show that germination characteristics differ considerably among altitudinal provenances and seem to be important in determining the capacity of the species to inhabit such a broad gradient.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3