The kinetics of the spontaneous, proton- and AlIII-catalysed hydrolysis of 1,5-anhydrocellobiitol — Models for cellulose depolymerization in paper aging and alkaline pulping, and a benchmark for cellulase efficiency

Author:

Baty John William,Sinnott Michael L

Abstract

The kinetics of the spontaneous, proton- and AlIII-catalysed hydrolyses of the C1—O4′ bond in 1,5-anhydrocellobiitol have been measured at elevated temperatures (125.0–220.0 °C). Data for the first two processes extrapolate to the expression k = (8.6 ± 2.1 × 10–16) + (1.4 ± 0.2 × 10–9-pH) s–1 at 25 °C. These room-temperature figures were used to model cellulose depolymerization by the af Ekenstam equation. The spontaneous process is too slow to contribute to loss of paper strength on aging, and even the acid-catalysed process is significant only below ~pH 4.0. However, the spontaneous hydrolysis readily accounts for the reduction of cellulose degree of polymerization (DP) during alkaline (e.g., kraft) pulping of cellulose fibres. Efficient electrophilic catalysis by AlIII was observed at 150.0 °C in 0.1 mol/L succinate buffers of room temperature pH 3.05 and 3.35 (k2 = 8.1 ± 0.4 × 10–3 and 4.2 ± 0.2 × 10–3 (mol/L) –1 s–1, respectively). The apparent activation energy of the AlIII-catalysed process was 31 ± 4 kJ mol-1, lower than that of the proton-catalysed path, suggesting the electrophilic catalysis increases in importance as the temperature approaches ambient. Consequently, it appears that the culprit in the impermanence of “rosin-alum” -sized paper is AlIII, directly acting as a Lewis acid, not the AlIII hydration sphere as a Brønsted acid. Conservation measures should either address this or be generic (e.g., low-temperature storage). Key words: cellulose, hydrolysis, kraft pulping, paper conservation, rosin-alum sizing.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3