Genetic diversity and population structure of castor (Ricinus communis L.) germplasm within the US collection assessed with EST-SSR markers

Author:

Wang M.L.1,Dzievit M.2,Chen Z.3,Morris J.B.1,Norris J.E.4,Barkley N.A.1,Tonnis B.1,Pederson G.A.1,Yu J.2

Affiliation:

1. USDA–ARS, Plant Genetic Resources Conservation Unit, 1109 Experiment Street, Griffin, GA 30223, USA.

2. Department of Agronomy, Iowa State University, 2014 Agronomy Hall, Ames, IA 50011, USA.

3. Department of Crop and Soil Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA.

4. Emory University Hospital, Emory University, 1364 Clifton Road, Atlanta, GA 30322, USA.

Abstract

Castor is an important oilseed crop and although its oil is inedible, it has multiple industrial and pharmaceutical applications. The entire US castor germplasm collection was previously screened for oil content and fatty acid composition, but its genetic diversity and population structure has not been determined. Based on the screening results of oil content, fatty acid composition, and country origins, 574 accessions were selected and genotyped with 22 polymorphic EST-SSR markers. The results from cluster analysis, population structure, and principal component analysis were consistent, and partitioned accessions into four subpopulations. Although there were certain levels of admixtures among groups, these clusters and subpopulations aligned with geographic origins. Both divergent and redundant accessions were identified in this study. The US castor germplasm collection encompasses a moderately high level of genetic diversity (pairwise dissimilarity coefficient = 0.53). The results obtained here will be useful for choosing accessions as parents to make crosses in breeding programs and prioritizing accessions for regeneration to improve germplasm management. A subset of 230 accessions was selected and will be planted in the field for establishing a core collection of the US castor germplasm. Further evaluation of the US castor germplasm collection is also discussed.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3