Exploring the potential of gametic reconstruction of parental genotypes by F1 hybrids as a bridge for rapid introgression

Author:

Cannon Charles H.11,Scher C. Lane11

Affiliation:

1. The Center for Tree Science, The Morton Arboretum, Lisle, IL 60532, USA.

Abstract

Interspecific hybridization and genetic introgression are commonly observed in natural populations of many species, especially trees. Among oaks, gene flow between closely related species has been well documented. And yet, hybridization does not lead to a “melting pot”, i.e., the homogenization of phenotypic traits. Here, we explore how the combination of several common reproductive and genomic traits could create an avenue for interspecific gene flow that partially explains this apparent paradox. During meiosis, F1 hybrids will produce approximately (½)n “reconstructed” parental gametes, where n equals the number of chromosomes. Crossing over would introduce a small amount of introgressive material. The resulting parental-type gametophytes would probably possess a similar fertilization advantage as conspecific pollen. The resulting “backcross” would actually be the genetic equivalent of a conspecific out-cross, with a small amount of heterospecific DNA captured through crossing over. Even with detailed genomic analysis, the resulting offspring would not appear to be a backcross. This avenue for rapid introgression between species through the F1 hybrid will be viable for organisms that meet certain conditions: low base chromosome number, conserved genomic structure and size, production of billions of gametes/gametophytes during each reproductive event, and conspecific fertilization advantage.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3